PATIENTS AND CAREGIVERS This site is intended for US healthcare professionals.
Close
Find a specialist

EFFICACYUnderstanding the endpoint

Not actual patients.

The MLMT® course evaluates an individual’s ability to navigate a mobility course, which integrates aspects of visual acuity, visual field, and light sensitivity.1

Not actual patients.

The multi-luminance mobility test® (MLMT®) course

A normally sighted ambulatory person would be able to complete the MLMT course at 1 lux with no or minimal errors.2

Get a tour of the MLMT

  • After 40 minutes of dark adaptation, participants completed a configuration of the course with one eye patched, completed a new configuration with the other eye patched, and completed a third configuration using both eyes.2
  • This process was repeated until failing and passing light-level thresholds were identified for each eye-patched condition, progressing from lower to higher prespecified light levels.2
  • Participants were graded based on accuracy and speed.2
    • Passing was defined as completion of the course at the specified lux level with fewer than 4 errors and within 3 minutes.2

The MLMT has demonstrated construct and content validity and was specifically designed to measure the impact of LUXTURNA® on activities of daily life1-3

Varying levels of illumination

The 7 levels of illumination, referred to as lux levels, were chosen to represent lighting in everyday locations. To quantify study participant performance over time, an MLMT score change was calculated by assigning score codes to each lux level.1,3

Lux levels were measured using a standardized and calibrated light meter1

LUX level tableLUX level table

The score change is the difference between the lowest lux level passed before treatment and after treatment.1,3

Stay informed by registering for updates

Graphic Screen icon
  • Get the latest news on LUXTURNA®
  • See the latest LUXTURNA efficacy data
  • Hear about new patient stories and resources

IMPORTANT SAFETY INFORMATION FOR LUXTURNA®

Warnings and Precautions

  • Endophthalmitis may occur following any intraocular surgical procedure or injection. Use proper aseptic injection technique when administering LUXTURNA, and monitor for and advise patients to report any signs or symptoms of infection or inflammation to permit early treatment of any infection.
  • Permanent decline in visual acuity may occur following subretinal injection of LUXTURNA. Monitor patients for visual disturbances.
  • Retinal abnormalities may occur during or following the subretinal injection of LUXTURNA, including macular holes, foveal thinning, loss of foveal function, foveal dehiscence, chorioretinal atrophy, and retinal hemorrhage. Monitor and manage these retinal abnormalities appropriately. Do not administer LUXTURNA in the immediate vicinity of the fovea. Retinal abnormalities may occur during or following vitrectomy, including retinal tears, epiretinal membrane, or retinal detachment. Monitor patients during and following the injection to permit early treatment of these retinal abnormalities. Advise patients to report any signs or symptoms of retinal tears and/or detachment without delay.
  • Increased intraocular pressure may occur after subretinal injection of LUXTURNA. Monitor and manage intraocular pressure appropriately.
  • Expansion of intraocular air bubbles Instruct patients to avoid air travel, travel to high elevations or scuba diving until the air bubble formed following administration of LUXTURNA has completely dissipated from the eye. It may take one week or more following injection for the air bubble to dissipate. A change in altitude while the air bubble is still present can result in irreversible vision loss. Verify the dissipation of the air bubble through ophthalmic examination.
  • Cataract Subretinal injection of LUXTURNA, especially vitrectomy surgery, is associated with an increased incidence of cataract development and/or progression.

Adverse Reactions

  • In clinical studies, ocular adverse reactions occurred in 66% of study participants (57% of injected eyes), and may have been related to LUXTURNA, the subretinal injection procedure, the concomitant use of corticosteroids, or a combination of these procedures and products.
  • The most common adverse reactions (incidence ≥5% of study participants) were conjunctival hyperemia (22%), cataract (20%), increased intraocular pressure (15%), retinal tear (10%), dellen (thinning of the corneal stroma) (7%), macular hole (7%), subretinal deposits (7%), eye inflammation (5%), eye irritation (5%), eye pain (5%), and maculopathy (wrinkling on the surface of the macula) (5%).

Immunogenicity

Immune reactions and extra-ocular exposure to LUXTURNA in clinical studies were mild. No clinically significant cytotoxic T-cell response to either AAV2 or RPE65 has been observed. In clinical studies, the interval between the subretinal injections into the two eyes ranged from 7 to 14 days and 1.7 to 4.6 years. Study participants received systemic corticosteroids before and after subretinal injection of LUXTURNA to each eye, which may have decreased the potential immune reaction to either AAV2 or RPE65.

Pediatric Use

Treatment with LUXTURNA is not recommended for patients younger than 12 months of age, because the retinal cells are still undergoing cell proliferation, and LUXTURNA would potentially be diluted or lost during the cell proliferation. The safety and efficacy of LUXTURNA have been established in pediatric patients. There were no significant differences in safety between the different age subgroups.

Please see the US Full Prescribing Information for LUXTURNA.

INDICATION

LUXTURNA (voretigene neparvovec-rzyl) is an adeno-associated virus vector-based gene therapy indicated for the treatment of patients with confirmed biallelic RPE65 mutation-associated retinal dystrophy.

Patients must have viable retinal cells as determined by the treating physicians.

References:

1. Chung DC, McCague S, Yu Z-F, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies. Clin Experiment Ophthalmol. 2018;46(3):247-259. 2. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849-860. doi:10.1016/S0140-6736(17)31868-8. 3. LUXTURNA [package insert]. Philadelphia, PA: Spark Therapeutics, Inc; 2022.